with(linalg): with(LinearAlgebra): mn1 := { [6, 6], [6, 5, 1], [6, 4, 2], [6, 3, 3], [6, 4, 1, 1], [6, 3, 2, 1], [6, 2, 2, 2], [5, 5, 2], [5, 4, 3], [5, 5, 1, 1], [5, 4, 2, 1], [5, 3, 3, 1], [5, 3, 2, 2], [5, 4, 1, 1, 1], [4, 4, 4], [4, 4, 3, 1] }: mn2 := { [5, 3, 2, 1, 1], [4, 4, 2, 2] }: fs:=proc(uu) factor(simplify( uu , power,symbolic)): end proc: kp:=proc(r) add( 1/2*( r[i]*(r[i]-2*i+1) ),i=1..nops(r) ): end proc: mat2 := proc(l1,l2) Matrix(2, 2, {(1, 1) = fs(sqrt(-l1*l2)/(l1-l2)), (1, 2) = fs(sqrt(l1^2-l1*l2+l2^2)/(l1-l2)), (2, 1) = fs(sqrt(l1^2-l1*l2+l2^2)/(l1-l2)), (2, 2) = -fs(sqrt(-l1*l2)/(l1-l2))}): end proc: mat3 := proc(l1,l2,l3) Matrix(3, 3, {(1, 1) = fs((l2+l3)*l1/((l1-l3)*(l1-l2))), (1, 2) = fs(I*sqrt(l1*l3+l2^2)*sqrt(l1^2+l2*l3)/(sqrt(l2-l3)*sqrt(l1-l3)*(l1-l2))), (1, 3) = fs(sqrt(l1^3*l2+l1^2*l3^2+l1*l2^2*l3+l2*l3^3)/(sqrt((l2-l3)*(l1-l2))*(l1-l3))), (2, 1) = fs(I*sqrt(l1*l3+l2^2)*sqrt(l1^2+l2*l3)/(sqrt(l2-l3)*sqrt(l1-l3)*(l1-l2))), (2, 2) = -fs((l1+l3)*l2/(l1*l2-l1*l3-l2^2+l2*l3)), (2, 3) = fs(I*sqrt(l1^2*l2*l3+l1*l2^3+l1*l3^3+l2^2*l3^2)/(sqrt(l1^2-l1*l2-l1*l3+l2*l3)*(l2-l3))), (3, 1) = fs(sqrt(l1^3*l2+l1^2*l3^2+l1*l2^2*l3+l2*l3^3)/(sqrt((l2-l3)*(l1-l2))*(l1-l3))), (3, 2) = fs(I*sqrt(l1^2*l2*l3+l1*l2^3+l1*l3^3+l2^2*l3^2)/(sqrt(l1^2-l1*l2-l1*l3+l2*l3)*(l2-l3))), (3, 3) = fs(l3*(l1+l2)/(l1*l2-l1*l3-l2*l3+l3^2))}): end proc: R[6,5,1]:=DiagonalMatrix(< 1/q^(kp([4, 4])), -1/q^(kp([4, 3, 1])) >): mat[6,5,1] := mat2( 1/q^(kp([4, 4])), -1/q^(kp([4, 3, 1])) ): R[6, 3, 2, 1]:=DiagonalMatrix(< -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])) >): mat[6, 3, 2, 1] := mat2( -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])) ): R[5, 4, 3]:=DiagonalMatrix(< -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])) >): mat[5, 4, 3] := mat2( -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])) ): R[5, 4, 1, 1, 1]:=DiagonalMatrix(< -1/q^(kp([4,3,1])), 1/q^(kp([3, 3, 1, 1])) >): mat[5, 4, 1, 1, 1] := mat2( -1/q^(kp([4,3,1])), 1/q^(kp([3, 3, 1, 1])) ): R[5, 2, 2, 2, 1]:=DiagonalMatrix(< 1/q^(kp([4, 2, 2])), -1/q^(kp([3, 2, 2, 1])) >): mat[5, 2, 2, 2, 1] := mat2( 1/q^(kp([4, 2, 2])), -1/q^(kp([3, 2, 2, 1])) ): R[6, 4, 2]:=DiagonalMatrix(< 1/q^(kp([4, 4])), -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])) >): mat[6, 4, 2] := mat3( 1/q^(kp([4, 4])), -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])) ): R[5, 5, 1, 1]:=DiagonalMatrix(< 1/q^(kp([4, 4])), -1/q^(kp([4, 3, 1])), 1/q^(kp([3, 3, 1, 1])) >): mat[5, 5, 1, 1] := mat3( 1/q^(kp([4, 4])), -1/q^(kp([4, 3, 1])), 1/q^(kp([3, 3, 1, 1])) ): R[5, 3, 3, 1]:=DiagonalMatrix(< -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])), 1/q^(kp([3, 3, 1, 1])) >): mat[5, 3, 3, 1] := mat3( -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])), 1/q^(kp([3, 3, 1, 1])) ): R[5, 3, 2, 2]:=DiagonalMatrix(< -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])), -1/q^(kp([3, 2, 2, 1])) >): mat[5, 3, 2, 2] := mat3( -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])), -1/q^(kp([3, 2, 2, 1])) ): R[4, 4, 3, 1]:=DiagonalMatrix(< -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])), -1/q^(kp([3, 2, 2, 1])) >): mat[4, 4, 3, 1] := mat3( -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])), -1/q^(kp([3, 2, 2, 1])) ): R[5, 3, 2, 1, 1]:= DiagonalMatrix(< -1/q^(kp([4, 3, 1])), 1/q^(kp([4, 2, 2])), 1/q^(kp([3, 3, 1, 1])), -1/q^(kp([3, 2, 2, 1])) >): mat[5, 3, 2, 1, 1] := Matrix(4, 4, {(1, 1) = q^4/((q^2+1)^2*(q^4-q^2+1)), (1, 2) = sqrt(q^2+q+1)*sqrt(q^2-q+1)*q^3/((q^2+1)^2*(q^4-q^2+1)), (1, 3) = sqrt(q^6+q^3+1)*sqrt(q^6-q^3+1)*q/((q^2+1)^2*(q^4-q^2+1)), (1, 4) = -sqrt(q^6+q^3+1)*sqrt(q^6-q^3+1)*sqrt(q^2+q+1)*sqrt(q^2-q+1)/((q^2+1)^2*(q^4-q^2+1)), (2, 1) = sqrt(q^2+q+1)*sqrt(q^2-q+1)*q^3/((q^2+1)^2*(q^4-q^2+1)), (2, 2) = -q^4/((q^2+1)^2*(q^4-q^2+1)), (2, 3) = sqrt(q^6+q^3+1)*sqrt(q^6-q^3+1)*sqrt(q^2+q+1)*sqrt(q^2-q+1)/((q^2+1)^2*(q^4-q^2+1)), (2, 4) = sqrt(q^6+q^3+1)*sqrt(q^6-q^3+1)*q/((q^2+1)^2*(q^4-q^2+1)), (3, 1) = sqrt(q^6+q^3+1)*sqrt(q^6-q^3+1)*q/((q^2+1)^2*(q^4-q^2+1)), (3, 2) = sqrt(q^6+q^3+1)*sqrt(q^6-q^3+1)*sqrt(q^2+q+1)*sqrt(q^2-q+1)/((q^2+1)^2*(q^4-q^2+1)), (3, 3) = -q^4/((q^2+1)^2*(q^4-q^2+1)), (3, 4) = sqrt(q^2+q+1)*sqrt(q^2-q+1)*q^3/((q^2+1)^2*(q^4-q^2+1)), (4, 1) = -sqrt(q^6+q^3+1)*sqrt(q^6-q^3+1)*sqrt(q^2+q+1)*sqrt(q^2-q+1)/((q^2+1)^2*(q^4-q^2+1)), (4, 2) = sqrt(q^6+q^3+1)*sqrt(q^6-q^3+1)*q/((q^2+1)^2*(q^4-q^2+1)), (4, 3) = sqrt(q^2+q+1)*sqrt(q^2-q+1)*q^3/((q^2+1)^2*(q^4-q^2+1)), (4, 4) = q^4/((q^2+1)^2*(q^4-q^2+1))}): R[5,4,2,1]:=DiagonalMatrix(< 1/q^(kp([4,4])),-1/q^(kp([4,3,1])),-1/q^(kp([4,3,1])),1/q^(kp([4,2,2])),1/q^(kp([3,3,1,1])),-1/q^(kp([3,2,2,1])) >): mat[5,4,2,1] := Matrix(6, 6, {(1, 1) = q^6/((q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)*(q^4+1)), (1, 2) = (q^4-q^2+1)^(1/2)*(q^2+q+1)^(3/2)*(q^2-q+1)^(3/2)*q^3/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4+1)), (1, 3) = -(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*q^4/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4+1)), (1, 4) = -q^2/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)), (1, 5) = -(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*q/((q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)), (1, 6) = (q^8+1)^(1/2)/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)), (2, 1) = (q^4-q^2+1)^(1/2)*(q^2+q+1)^(3/2)*(q^2-q+1)^(3/2)*q^3/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4+1)), (2, 2) = q^6*(q^2+q+1)*(q^2-q+1)/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)*(q^2+1)^2), (2, 3) = -q*(q^8+1)^(1/2)*(q^16+3*q^14+5*q^12+6*q^10+5*q^8+6*q^6+5*q^4+3*q^2+1)/((q^4-q^2+1)^(1/2)*(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)*(q^2+1)^2*(q^4+1)), (2, 4) = (q^4+1)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*q^3/((q^4-q^2+1)^(1/2)*(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^2+1)^2), (2, 5) = -(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^8+1)^(1/2)/((q^4-q^2+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^2+1)^2), (2, 6) = -q*(q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4-q^2+1)^(1/2)*(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^2+1)^2*(q^4+1)), (3, 1) = -(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*q^4/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4+1)), (3, 2) = -q*(q^8+1)^(1/2)*(q^16+3*q^14+5*q^12+6*q^10+5*q^8+6*q^6+5*q^4+3*q^2+1)/((q^4-q^2+1)^(1/2)*(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)*(q^2+1)^2*(q^4+1)), (3, 3) = q^2*(q^20+q^18+q^10+q^2+1)/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)*(q^4-q^2+1)*(q^2+1)^2*(q^4+1)), (3, 4) = (q^8+q^6-q^4+q^2+1)*(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2), (3, 5) = -q^3*(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2), (3, 6) = (q^6+q^5+q^4+q^3+q^2+q+1)*(q^6-q^5+q^4-q^3+q^2-q+1)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*q^2/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2*(q^4+1)), (4, 1) = -q^2/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)), (4, 2) = (q^4+1)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*q^3/((q^4-q^2+1)^(1/2)*(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^2+1)^2), (4, 3) = (q^8+q^6-q^4+q^2+1)*(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2), (4, 4) = -(q-1)^2*(q+1)^2*q^2/((q^4-q^2+1)*(q^2+1)^2), (4, 5) = -q*(q^4+1)*(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2), (4, 6) = -q^2*(q^8+1)^(1/2)/((q^4-q^2+1)*(q^2+1)^2), (5, 1) = -(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*q/((q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)), (5, 2) = -(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^8+1)^(1/2)/((q^4-q^2+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^2+1)^2), (5, 3) = -q^3*(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2), (5, 4) = -q*(q^4+1)*(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2), (5, 5) = -q^4*(q^8+1)/((q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)*(q^4-q^2+1)*(q^2+1)^2), (5, 6) = -q^5*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2), (6, 1) = (q^8+1)^(1/2)/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)), (6, 2) = -q*(q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^8+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4-q^2+1)^(1/2)*(q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^2+1)^2*(q^4+1)), (6, 3) = (q^6+q^5+q^4+q^3+q^2+q+1)*(q^6-q^5+q^4-q^3+q^2-q+1)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*q^2/((q^12+2*q^10+2*q^8+q^6+2*q^4+2*q^2+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2*(q^4+1)), (6, 4) = -q^2*(q^8+1)^(1/2)/((q^4-q^2+1)*(q^2+1)^2), (6, 5) = -q^5*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4-q^3+q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^2+1)*(q^2+1)^2), (6, 6) = -q^6/((q^2+1)^2*(q^4+1)*(q^4-q^2+1))}, datatype = anything, storage = rectangular, order = Fortran_order, shape = []): R[4,4,2,2]:=DiagonalMatrix(< 1/q^(kp([4,4])),-1/q^(kp([4,3,1])),1/q^(kp([4,2,2])),1/q^(kp([3,3,1,1])),-1/q^(kp([3,2,2,1])),1/q^(kp([2,2,2,2])) >): mat[4,4,2,2] := Matrix(6, 6, {(1, 1) = q^8/((q^4+1)^2*(q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)), (1, 2) = q^5*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+1)^2), (1, 3) = q^4/(((q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1))^(1/2)*(q^4+1)), (1, 4) = -q^2*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4+1)*(q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)), (1, 5) = -q*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)/(q^4+1)^2, (1, 6) = (q^4-q^2+1)*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+1)^2), (2, 1) = -q^5*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+1)^2), (2, 2) = -q^2*(q^12+q^10+2*q^8+2*q^4+q^2+1)/((q^2+1)^2*(q^4-q^2+1)*(q^4+1)^2), (2, 3) = -((q^2+q+1)*(q^2-q+1))^(1/2)*(q^8+1)*q/((q^4-q^2+1)*(q^4+1)*(q^2+1)^2), (2, 4) = q*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)*(q^8+1)/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4-q^2+1)*(q^4+1)*(q^2+1)^2), (2, 5) = (q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)*(q-1)^2*(q+1)^2/((q^2+1)^2*(q^4-q^2+1)*(q^4+1)^2), (2, 6) = q*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)/(q^4+1)^2, (3, 1) = q^4/(((q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1))^(1/2)*(q^4+1)), (3, 2) = ((q^2+q+1)*(q^2-q+1))^(1/2)*(q^8+1)*q/((q^4-q^2+1)*(q^4+1)*(q^2+1)^2), (3, 3) = (q^8+q^6+1)*(q^8+q^2+1)/((q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)*(q^4-q^2+1)*(q^2+1)^2), (3, 4) = ((q^2+q+1)*(q^2-q+1)*(q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^6+q^5+q^4+q^3+q^2+q+1)*(q^6-q^5+q^4-q^3+q^2-q+1))^(1/2)*q^2/((q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)*(q^4-q^2+1)*(q^2+1)^2), (3, 5) = ((q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^6+q^5+q^4+q^3+q^2+q+1)*(q^6-q^5+q^4-q^3+q^2-q+1))^(1/2)*(q^8+1)*q/((q^2+1)^2*(q^4-q^2+1)*(q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^4+1)), (3, 6) = ((q^6+q^5+q^4+q^3+q^2+q+1)*(q^6-q^5+q^4-q^3+q^2-q+1)*(q^2+q+1)*(q^2-q+1))^(1/2)*q^2/((q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^4+1)), (4, 1) = -q^2*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4+1)*(q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)), (4, 2) = -q*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)*(q^8+1)/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4-q^2+1)*(q^4+1)*(q^2+1)^2), (4, 3) = ((q^2+q+1)*(q^2-q+1)*(q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^6+q^5+q^4+q^3+q^2+q+1)*(q^6-q^5+q^4-q^3+q^2-q+1))^(1/2)*q^2/((q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)*(q^4-q^2+1)*(q^2+1)^2), (4, 4) = (q^8+q^6+1)*(q^8+q^2+1)/((q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1)*(q^4-q^2+1)*(q^2+1)^2), (4, 5) = -q*(q^8+1)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4-q^2+1)*(q^2+1)^2*(q^4+1)), (4, 6) = -q^4/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+1)), (5, 1) = q*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)/(q^4+1)^2, (5, 2) = (q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)*(q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)*(q-1)^2*(q+1)^2/((q^2+1)^2*(q^4-q^2+1)*(q^4+1)^2), (5, 3) = -((q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^6+q^5+q^4+q^3+q^2+q+1)*(q^6-q^5+q^4-q^3+q^2-q+1))^(1/2)*(q^8+1)*q/((q^2+1)^2*(q^4-q^2+1)*(q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^4+1)), (5, 4) = q*(q^8+1)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4-q^2+1)*(q^2+1)^2*(q^4+1)), (5, 5) = -q^2*(q^12+q^10+2*q^8+2*q^4+q^2+1)/((q^2+1)^2*(q^4-q^2+1)*(q^4+1)^2), (5, 6) = -q^5*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+1)^2), (6, 1) = (q^4-q^2+1)*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+1)^2), (6, 2) = -q*(q^6+q^5+q^4+q^3+q^2+q+1)^(1/2)*(q^6-q^5+q^4-q^3+q^2-q+1)^(1/2)/(q^4+1)^2, (6, 3) = ((q^6+q^5+q^4+q^3+q^2+q+1)*(q^6-q^5+q^4-q^3+q^2-q+1)*(q^2+q+1)*(q^2-q+1))^(1/2)*q^2/((q^4+q^3+q^2+q+1)*(q^4-q^3+q^2-q+1)*(q^4+1)), (6, 4) = -q^4/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+1)), (6, 5) = q^5*(q^2+q+1)^(1/2)*(q^2-q+1)^(1/2)/((q^4+q^3+q^2+q+1)^(1/2)*(q^4-q^3+q^2-q+1)^(1/2)*(q^4+1)^2), (6, 6) = q^8/((q^4+1)^2*(q^4-q^3+q^2-q+1)*(q^4+q^3+q^2+q+1))}, datatype = anything, storage = rectangular, order = Fortran_order, shape = []): R[6,6] := DiagonalMatrix(< 1/q^(kp([4,4])) >): mat[6,6] := DiagonalMatrix(<1>): R[6, 3, 3] := DiagonalMatrix(< -1/q^(kp([4,3,1])) >): mat[6, 3, 3] := DiagonalMatrix(<1>): R[6, 4, 1, 1] := DiagonalMatrix(< -1/q^(kp([4,3,1])) >): mat[6, 4, 1, 1] := DiagonalMatrix(<1>): R[6, 2, 2, 2] := DiagonalMatrix(< 1/q^(kp([4,2,2])) >): mat[6, 2, 2, 2] := DiagonalMatrix(<1>): R[5, 5, 2] := DiagonalMatrix(< -1/q^(kp([4,3,1])) >): mat[5, 5, 2] := DiagonalMatrix(<1>): R[4, 4, 4] := DiagonalMatrix(< 1/q^(kp([4,2,2])) >): mat[4, 4, 4] := DiagonalMatrix(<1>):