Reshetikhin-Turaev approach
-
original papers
- E.Witten, Comm.Math.Phys. ${\bf 121}$ (1989) 351;
- N.Yu.Reshetikhin and V.G.Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. $\textbf{127}$ (1990) 1-26;
- E.Guadagnini, M.Martellini and M.Mintchev, Clausthal 1989, Procs., Quantum groups, 307-317; Phys.Lett. $\textbf{B235}$ (1990) 275 ;
- V. G. Turaev and O. Y. Viro, State sum invariants of 3 manifolds and quantum 6j symbols, Topology 31, 865 (1992)
-
for main definitions see
-
for evolution method see
- P.Dunin-Barkowski, A.Mironov, A.Morozov, A.Sleptsov, A.Smirnov, JHEP ${\bf 03}$ (2013) 021, arXiv:1106.4305;
- A.Mironov, A.Morozov and An.Morozov, AIP Conf. Proc. ${\bf 1562}$ (2013) 123, arXiv:1306.3197;
- A.Mironov, A.Morozov and An.Morozov, Mod. Phys. Lett. ${\bf A 29}$ (2014) 1450183, arXiv:1408.3076;
- S.Arthamonov, A.Mironov, A.Morozov and An.Morozov, JHEP ${\bf 04}$ (2014) 156, arXiv:1309.7984
-
for eigenvalue hypothesis see
- H.Itoyama, A.Mironov, A.Morozov and An.Morozov, IJMP ${\bf A28}$ (2013) 1340009, arXiv:1209.6304
-
for cabling method see
- A.Anokhina and An.Morozov, Teor.Mat.Fiz. ${\bf 178}$ (2014) 3-68 (Theor.Math.Phys. ${\bf 178}$ (2014) 1-58), arXiv:1307.2216
-
for combination with conformal block approach see
- S.Nawata, P.Ramadevi, Zodinmawia, J.Knot Theory and Its Ramifications ${\bf 22}$ (2013) 13, arXiv:1302.5144;
- Zodinmawia's PhD thesis, 2014;
- D.Galakhov, D.Melnikov, A.Mironov, A.Morozov and A.Sleptsov, Phys.Lett. ${\bf B743}$ (2015) 71-74, arXiv:1412.2616;
- A.Mironov, A.Morozov and A.Sleptsov, JHEP ${\bf 07}$ (2015) 069, arXiv:1412.8432;
- S.Nawata, P.Ramadevi and Vivek Kumar Singh, arXiv:1504.00364;
- A.Mironov, A.Morozov, An.Morozov, P.Ramadevi, and Vivek Kumar Singh, JHEP ${\bf 1507}$ (2015) 109, arXiv:1504.00371;
- A.Mironov and A.Morozov, arXiv:1506.00339;
- A.Mironov, A.Morozov, An.Morozov, A.Sleptsov,
arXiv:1508.02870