## Examples of parameters for various knot families

Concrete values of parameters for 6-parametric family $Q_6^{(1)}$ $$d_R\sum_{\bar X, \bar Y} d_{\bar X} d_{\bar Y} F_{apa}(\bar X) F_{pa}(\bar X) \bar P_{XY} F_{apa}(\bar Y)F_{pa}(\bar Y) \label{Q61}$$ see here;

for 7-parametric family $$d_R \sum_{\bar X,Y,\bar Z} d_{\bar X} d_Y d_{\bar Z}\cdot F_{pa}(\bar X)F_{aa}(\bar X)\bar T_X^{n}P_{Y\bar X} F_{ap}(Y) P_{\bar ZY} F_{aaa}(\bar Z)F_{pa}(\bar Z)$$ see here;

for 10-parametric family containing non-arborescent knots $$d_{[3]} \cdot K^{(m_1,n_1)}_{[2]}\cdot \left( \prod_{i=2}^{5} P^{(n_i)}_{[2]}\right) K^{(m_6,n_6)}_{[2]}\bar K^{(n_6,n_7)}_{[2]} \ \ + \ \ d_{[111]}\cdot K^{(m_1,n_1)}_{[11]}\cdot \left( \prod_{i=2}^{5} P^{(n_i)}_{[11]}\right) K^{(m_6,n_6)}_{[11]}\bar K^{(m_7,n_7)}_{[11]} \ \ +$$ \begin{multline} +\ \ d_{[21]}\cdot {\rm Tr}_{2\times 2} \left\{ \left(\begin{array}{cc} K^{(m_1,n_1)}_{[2]} & 0 \\ \\ 0 & K^{(m_1,n_1)}_{[11]} \end{array}\right) \left(\begin{array}{cc} P^{(n_2)}_{[2]} & 0 \\ \\ 0 & P^{(n_2)}_{[11]} \end{array}\right) % \left(\begin{array}{cc} \frac{1}{[2]}& \frac{\sqrt{[3]}}{[2]} \\ \\ \frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]} \end{array}\right) % \left(\begin{array}{cc} P^{(n_3)}_{[2]} & 0 \\ \\ 0 & P^{(n_3)}_{[11]} \end{array}\right) % \left(\begin{array}{cc} \frac{1}{[2]}& \frac{\sqrt{[3]}}{[2]} \\ \\ \frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]} \end{array}\right) \cdot % \right. %$$%$$ \left(\begin{array}{cc} P^{(n_4)}_{[2]} & 0 \\ \\ 0 & P^{(n_4)}_{[11]} \end{array}\right) % \left(\begin{array}{cc} \frac{1}{[2]}& \frac{\sqrt{[3]}}{[2]} \\ \\ \frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]} \end{array}\right) % \left(\begin{array}{cc} P^{(n_5)}_{[2]} & 0 \\ \\ 0 & P^{(n_5)}_{[11]} \end{array}\right) % \left(\begin{array}{cc} \frac{1}{[2]}& \frac{\sqrt{[3]}}{[2]} \\ \\ \frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]} \end{array}\right) % \left(\begin{array}{cc} K^{(m_6,n_6)}_{[2]} & 0 \\ \\ 0 & K^{(m_6,n_6)}_{[11]} \end{array}\right) \cdot % \\ \cdot \left. \left(\begin{array}{cc} \frac{1}{[2]}& \frac{\sqrt{[3]}}{[2]} \\ \\ \frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]} \end{array}\right) % \left(\begin{array}{cc} \bar K^{(m_7,n_7)}_{[2]} & 0 \\ \\ 0 & \bar K^{(m_7,n_7)}_{[11]} \end{array}\right) % \left(\begin{array}{cc} \frac{1}{[2]}& \frac{\sqrt{[3]}}{[2]} \\ \\ \frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]} \end{array}\right) \right\} \ \ \ \ \ \ \ \ \end{multline} see here